Ty IPhO : Relativité Restreinte
O Physicité (corrections)

1 Généralités

Exercice 1: Le Flash

1. Supposons que le Flash va a une vitesse v et notons ~ le facteur de Lorentz associé.
Une durée mesurée dans le référentiel fixe At sera pergue comme At par le Flash. De
son point de vue, le temps est effectivement ralenti d’un facteur 4. On cherche donc la
vitesse v, telle que v =2. 0On a

1
2=r= =
-
Donc )
(U
4(1--2)=1
(1-%)
Puis
v _ 3
2 4
Et donc
V3
Vo = 7C

1 1

En prenant ¢ ~ 3 x 10® m.s~!, on obtient que le Flash court & une vitesse 2,6 x 10® m.s~

2. La police nous apprend que la distance entre le repere et la ville est de 8 km si mesurée
dans un repere fixe. Or si le Flash court a une vitesse v et avec « le facteur de Lorentz
associé, les distances fixes qu’il pergoit sont réduites d’un facteur 1/4. Si il a mesuré une
distance de 5 km entre la ville et le repere, c’est donc que

5_1_ ;v
8 v c?
Ainsi, on a
PR
2 64 64
Donc
V39
U:?C

Avec la calculatrice, on trouve que le Flash courait & une vitesse de 2,3 x 10® m.s~ .

Exercice 2 : L’élixir de jeunesse

1. Lorsque l’'on voyage beaucoup, on est souvent en mouvement par rapport au référentiel
fixe. Mais lorsque 'on bouge puis que l'on retourne au référentiel fixe, moins de temps
se sera écoulé pour nous que pour ceux restés dans le référentiel fixe. Ce faisant, nous
ralentissons donc effectivement notre vieillissement.
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2. Si une personne voyage a une vitesse v pendant une durée At mesurée dans le référentiel
fixe, alors la personne aura vécu un voyage d’une durée %At avec v le facteur de Lorentz

associé a v. A basse vitesse, pour v trés petit devant ¢, on a

1
1 2\ 2 2
iy L P
v 02 02

Si un pilote de ligne passe une durée At a piloter des avions au cours de sa carriere, il
aura pergu cette durée comme
2
v
At(1——

Et aura donc effectivement ralenti son vieillissement d’un temps

2
v At
Atgagné - CT

Pour une vitesse v et une durée At données par
v=900 kmht=250m.s' et At=30x200x5h=30x10>h=108x10°s

avec ¢ ~ 3 x 108 m.s~!

, on calcule que le pilote de ligne a ralenti son vieillissement de
Atgagns = 7,5 x 107° s =75 us
3. On reéutilise la méme formule Atgagne = v?c2At. Cette fois-ci on a pour vitesse et durée
v=30kmh1=83ms ! et At=5x200x1h=10h=3,6x10°s
Donc ’étudiant ralenti son vieillissement de

Atgagns = 2,8 x 1077 s =2,8 ns

En comparaison, la lumiere peut se déplacer d’environ un metre pendant ce laps de
temps.

Exercice 3 : Muons dans ’atmosphére

1. Le temps mis a parcourir une distance h a vitesse v est ¢t = % Ici, h = 10* m et la vitesse
v=-c~~3x10® m.s™!'. Donc le temps pris par la lumiére pour atteindre le sol depuis une
hauteur de 15 km est d’environ 3 x 107° s. C’est plus de dix fois le temps de vie moyen
d’un muon. Sachant gqu’un muon va nécessairement plus lentement que la lumiere, on
s’attendrait en physique non-relativiste a ce qu’il soit presque impossible pour un muon
d’atteindre le sol.

2. La relativité restreinte dit que lorsqu’un objet va vite, les longueurs de son point de vue
se contractent. A grande vitesse, un muon voit sa distance au sol réduire, et peut donc
latteindre a temps. De notre point de vue, le temps propre du muon ralentit, et cela
rallonge son temps de vie.

3. En supposant qu’il va a une vitesse v, il prend dans notre référentiel un temps t = % a
atteindre le sol. Or on sait que le muon percoit nos durées comme dilatées d’un facteur

v, le facteur de Lorentz.
1
N = =

c2
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De son point de vue, il prend donc un temps

Atmuon =

(a) Notons v sa vitesse, avec v le facteur de Lorentz associé. Si il se désintégre aprés

4.
avoir vécu un temps 7, il faut que

Soit en passant au carré
2
[
70 U2 > h2 < )

En développant et regroupant, on a

h2
V>
- 2 h?

Sachant que la vitesse doit étre positive, on peut prendre la racine de chaque c6té

h

V> ——
2

B+ %

Comme on a le temps propre avec 4 chiffres significatifs, on prend ¢ = 2,998 m.s™!
C’est nécessaire pour ne pas avoir vmin = ¢. En rentrant les valeurs dans la formule,

on obtient comme vitesse minimale
Vmin = 2,995 x 108 m.s™!

Le facteur de Lorentz associé est

Ymin =

Sachant que l’énergie en mouvement est donnée par v fois ’énergie au repos, on a
donc
Emin = ’Yminmuc2 = 1,83 GeV

En notant Ey 'énergie du muon au repos et v son facteur de Lorentz par rapport a

(b)

nous, on voit que
_E
Avec
E? 1
_— = ’)/ =
E? —
On a
E2 E2’U2
Eg Egc2
Donc
2 c? 2 2
V=5 (E* — Ej)
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Encore une fois, on peut passer a la racine puis utiliser la formule de la question (3),
pour voir que le muon atteint le sol aprés avoir vécu une durée

Ap_ o hEg

T w e /E2— E?
La probabilité que le muon atteigne le sol est donc de

hEqg

P — e_ﬂ'oc\/EQng
En rentrant les valeurs explicites, on obtient une probabilité de

P = 44,8%

Exercice 4 : Hulk

1. On note ¢, la direction du mouvement de la voiture, et ¢, la direction du ciel. On peut
décomposer la longueur L de la voiture en deux parties : la longueur L, selon €, et la
longueur L, selon €y,. On a

L, = Lcos(f) et L, = Lsin(f)

Et par le théoréme de Pythagore,
L+ L =1L"

Maintenant, on sait que la voiture bouge dans le sens de &, & une vitesse v = 2 x 10 m.s™!,

et ne bouge pas du tout dans le sens de ¢,. Donc dans le référentiel fixe, L, ne change
pas mais L, se contracte d’un facteur 1/+. Du point de vue du méchant qui ne bouge pas,
la longueur de la voiture est donc par le théoreme de Pythagore

1
L= gbi +15= \/ (1 — B2)L2 cos(h)* + L2 sin(6)*

Mais cos(6)® +sin(f)? = 1 et donc

L' = Ly/1 — 2 cos(6)?

Dans notre cas, L=4m, § =7/4 et § =v/c=2/3. On calcule la longueur de la voiture que
le méchant se prend
L'=35m

2. On a déja vu que L, devient %Lz a cause de la vitesse, tandis que L, reste fixe. On peut
donc calcule le nouvel angle a l'aide de la fonction arc tangente

I :
¢’ = arctan ( Ly ) = arctan <’y Sm(e)) = arctan (ytan(6))

% - cos(6)
Avec la calculatrice, on obtient

0’ = 0,93 radians = 53 degrés
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2 L’Espace de Minkowski

Exercice 5 : Modéliser un trou noir

1. Un objet avance dans son futur, il ne peut pas aller dans son ailleurs ou dans son passé.
Or le futur d’un objet dans le futur, est dans le futur. Autrement dit, si un objet est dans
le futur, il ne peut que continuer a étre dans le futur. Le méme raisonnement est valable
avec les cOnes de lumiere, ce qui fait que de la lumiere qui commence dans le futur ne
peut que rester dans le futur.

2. La trajectoire d’un objet avance nécessairement dans le temps et finit a un temps infini,
alors que le passé finit a un temps ¢t = 0. Donc tout objet est obligé de sortir du passé a
un moment ou un autre. Le méme argument est valable pour la lumiere.

3. (a) En suivant une trajectoire au repos dans le référentiel que nous utilisons, un objet
finira toujours dans le futur

(b) Le futur d’un objet dans notre ailleurs est dans notre futur ou notre ailleurs, pas
notre passé. Comme un objet ne peut aller que dans son futur, il ne peut pas aller
dans le passé.

(c) Siilestaurepos, il suit une trajectoire rectiligne dans le référentiel que nous utilisons.
Il va a une vitesse fixe v < ¢. Or comme le futur grandit a une vitesse ¢ > v, Uobjet
finira forcément dans le futur.

(d) En général, 'objet peut accélérer constamment. Une accélération constante ne
permet pas de dépasser la vitesse de la lumiere mais permet de s’en approcher
infiniment. Ainsi, un objet finira toujours par se rapprocher infiniment proche du
cOne de lumiere futur. Mais avec une accélération constante il est possible de ne
jamais le traverser et de toujours rester dans lailleurs.

4. (a) En utilisant les mémes arguments que précédemment, on voit que la lumiére peut
facilement entrer dans le futur mais ne peut jamais entrer dans le passé.
(b) La lumiére va a la méme vitesse que l’expansion du cone futur, c. Donc si la lumiere
se dirige dans une direction opposé au futur, elle peut se maintenir dans 'espace a
une distance du futur constante a travers le temps. Par contre, elle ne peut pas s’en
éloigner. A chaque fois que la lumiére se rapproche du futur en allant un peu dans
sa direction, elle s’en rapproche de maniére irréversible.

Le futur et lailleurs proches du cone de lumiére futur modélisent tres bien la zone proche de
la surface d’un trou noir, que ce soit l'intérieur du trou noir proche de la surface dans le cas
du futur, ou Uextérieur du trou noir proche de la surface dans le cas de lailleurs. Il en va de
méme pour le passé qui modélise la surface d’un trou blanc.

Exercice 6 : Coincer la lumiere

Un objet sans masse se déplace nécessairement a la vitesse de la lumieére, c. En particulier,
un tel objet ne peut pas ralentir. Or avec une seule dimension spatiale, il faut nécessairement
ralentir pour faire demi-tour. L’objet ne peut donc que soit aller a droite pour toute sa vie, soit
aller a gauche pour toute sa vie. Formellement, deux trajectoires sont possibles. Avec t(s) = s
et en supposant que la trajectoire passe par lorigine, soit z(s) = c¢s soit x(s) = —cs. Une théorie
d’objets sans masses est donc la somme de deux théories découplées : celle constituée des
objets allant a droite, et celle constituée des objets allant a gauche.

Exercice 7 : Géométrie dans I’espace de Minkowski
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1. On fixe L. En 2 dimensions, le cercle de rayon L est 'ensemble des points aux coordonnées
(t,z) tel que la distance entre (z,y) et (0,0) soit L. Mais cette distance est lintervalle de
Lorentz,

As? =2t —0)? — (x —0)? =% — 22

On cherche donc les points (¢, z) tel que
L2 = 242 _ g2

C’est ’équation d’une hyperbole de centre 0, ayant pour asymptotiques les cones lumieres,
et de sommets (L,0) et (—L,0). Le "cercle" est dessiné en bleu ci-dessous.

2. Soit un triangle équilatéral ABC dans l'espace de Minkowski. Comme la géométrie de
'espace est invariante sous translation, on peut bouger le triangle équilatéral dans
'espace et il sera toujours équilatéral. En particulier, on peut supposer que A est lorigine
sans perte de généralité. On note aussi la longueur de ses cétés L > 0. Alors B et C sont
sur le cercle de longueur L passant par lorigine que l'on a tracé auparavant. Tragons un
deuxieme cercle de longueur L de centre B, comme représenté ci-contre.

S—

Alors C est alors un point ou les deux cercles se croisent. Mais les cercles ne se croisent
jamais. Un cercle de centre X est inclut dans le passé et le futur de X, et ne passe jamais
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par son ailleurs. Or la partie future du cercle de centre A est dans lailleurs de B, et ne
croise donc jamais le cercle de centre B. De méme, la partie passée du cercle de centre
A est dans le passé de B et ne peut donc croiser que la partie passé du cercle de centre
B, mais cette partie est dans lailleurs de A. Ainsi, il n’existe pas de triangle équilatéral
dans l'espace de Minkowski en 2 dimensions.

3 Trajectoires et Mouvement

Exercice 8 : Trajectoires non-galiléennes

1. Si l'on effectue une rotation de 7 radians ou 180 degrés autours de 'axe des y ou l’axe des
z, x devient —x et vice versa. La trajectoire bleue devient la trajectoire verte, et vice versa.
En considérant notre référentiel comme galiléen, les lois de la physique ne changent
pas sous une rotation et donc nos deux amis vivent la méme chose. En particulier, il
vieillissent tous deux exactement pareil.

2. Comme nos deux amis vivent exactement la méme chose, on ne s’intéresse qu’a notre
ami vert sans perte de généralité.
(a) La trajectoire de notre ami vert est donnée par

x(t) = vot — %tQ

Ato =0, z(tg) = 0 : il part du vaisseau. L’instant ¢; ouU il revient est le deuxiéme instant
tel que z(ty) =0, aprés le départ. On cherche donc t; tel que

ot — gtfc —0

Soit a

De notre point de vue, la durée prise par nos deux amis pour revenir est

2
At:tf—toztf:%

(b) Du point de vue de notre ami vert, le temps s’écoule plus vite d’un facteur %, avec vy
le facteur de Lorentz associé a sa vitesse. Comme sa vitesse change tout le temps, v
change aussi. Etant donné un instant ¢t entre ¢, et ¢, sa vitesse est donnée par

u(t) = (;f(t) = —at

1

_ (wg—at)?
1 =

Donc le facteur v a cet instant vaut v = Ainsi, en intégrant sur tous les

instants de la trajectoire, on voit que nos amis ressentent passer un temps

ty ty
1 1
At’:/vdtzc/\/mdt ()
to to

Pour une petite vitesse, on retrouve approximativement At' =t¢; — t;. Cependant,

V2 — (v —at)?2<ec

et donc on voit bien que At < At.

7/18



O Physicité IPhO : Relativité Restreinte (corrections)

3. Les deux amis vont du point (%, 0,0,0) au point (t,0,0,0) de 'espace-temps, dans notre
référentiel. Or on sait qu’il existe une seule trajectoire qui prend un maximum de temps
pour aller d’un point a l'autre : la trajectoire galiléenne, représentée par une ligne droite
dans n’importe quel référentiel galiléen. En se plagant dans le référentiel de notre ami
bleu, qui est un référentiel galiléen, on voit bien que lui-méme se déplace en ligne droite
tandis que notre ami vert suit une trajectoire courbe. Ainsi, notre ami bleu percgoit plus
de temps s’écouler avant de rentrer sur le vaisseau, et a plus vieillit que notre ami vert.

Exercice 9 : Des horloges qui voyagent

Il faut ici prendre en compte le fait que la Terre est ronde, et qu’elle tourne sur elle-méme.
Le soleil se léve a l'est et se couche a Uouest, donc la Terre tourne sur-elle méme vers lest. Se
déplacer vers 'ouest revient donc a aller a contre-sens de la Terre et a moins nous déplacer
par rapport au soleil, que 'on peut considérer comme un référentiel fixe galiléen, alors que se
déplacer vers l'est revient a se rajouter encore plus de vitesse par rapport au déplacement de
la Terre. Si 'on se place dans le référentiel du soleil et qu’on regarde les trajectoires dans
espace-temps, ce sont les horloges qui sont parties vers 'ouest qui ont la trajectoire la plus
proche d’une ligne droite, puis les horloges restées sur place, puis celles parties vers Uest.
Autrement dit, ce sont les horloges parties vers 'ouest qui ont vu le plus de temps s’écouler,
puis les horloges restées sur place, puis les horloges parties vers ’est. Cela explique que les
horloges parties vers l’est ont accumulé du retard, alors que celles parties vers l'ouest ont
accumulé de l’avance.

Exercice 10 : Superman

Il nous faut ici composer la vitesse v, de Superman avec la vitesse v; de sa lance. Or la
formule de composition des vitesses nous dit que la vitesse composée v’ est donnée par

; Vst

VsV
Avec vy = v; = ¢/2, on voit que la lance fonce sur ’ennemi de Superman a une vitesse

4
= =2 =924%10° ms!
1+1 5

=

Exercice 11 : Compétition alien

On note ¢, la direction d’un des vaisseaux extraterrestres que l'on va nommer X, ¢, la
direction de l'autre vaisseau que 'on va nommer Y, et v leur vitesse vues du référentiel
terrestre. On cherche a trouver la vélocité 7, de Y vue dans le référentiel propre de X, sans
perte de généralité. On peut décomposer cette vélocité en deux, entre la partie v, , qui va dans
la direction ¢, et la partie v,, qui va dans la direction ¢,. Sous le boost permettant d’aller du
référentiel de la Terre au référentiel de X, on sait que le temps se fait dilater par un facteur ~,
tout comme les distances selon €, tandis que les distances selon ¢, ne changent pas. Pour
les vitesses qui sont des unités de distance divisées par des unités de temps, cela veut dire
gu’une vitesse selon &, ne changent pas alors qu’une vitesse selon ¢, se fait transformer par
un facteur Z.
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Dans le référentiel de X, deux choses contribuent au mouvement de Y : le mouvement de
Y vers la Terre et le mouvement général de la Terre et de Y vers X. Le mouvement de Y vers
la Terre se fait dans la direction €, et est donc réduit d’un facteur 1/v lorsque 'on passe dans
le référentiel de X. D’un autre coté, le mouvement de la Terre et de Y se fait dans la direction
€, et ne change pas avec le changement de référentiel. On a donc v, , = %v, tandis que v, , = v.
Par le théoreme de Pythagore, on trouve la vitesse totale

/2 2 2, 1.0 v?
Uy = [V + V5, = v+;v =0 2—6—2

Pour un petit v, on obtiendrait bien v/ = v/2 v comme attendu. Avec v = 0.9¢, on obtient
Uy =1,04 v =10.940 ¢ = 2,82 x 10® m.s~!

IL est bien entendu aussi possible de retrouver ce résultat de maniere plus propre mais plus
calculatoire, en passant par les formules de transformation de quadrivecteur.

Exercice 12 : Accélération dans une accélération

1. Nous pouvons fixer un parametre s qui suit le temps dans le référentiel du train, t;(s) = s.
L’indice t est la pour indiquer que c’est le temps du train. L’accélération de la voiture
télécommandée étant constante, on la note a; par abus de langage de sorte a avoir
a(s) = a;. Puis en intégrant selon ¢t = s, on a v(s) = ass et x4(s) = ass%/2.

2. Comme tout le probleme va selon une seule direction spatiale, nous ne considérerons
gue les deux premiéres composantes des quadrivecteurs, les deux dernieres étant égales
a 0. En notant X; le quadrivecteur position et en injectant directement la trajectoire
calculée a la question d’avant, on a

XP(s) = cs
X} (s) = ass*/2

Le quadrivecteur vitesse U} est donné par (vye,yv). En notant le facteur de Lorentz associé
au mouvement de la voiture dans le référentiel du train

(s) 1 1
’Yt s 2 2.2
\/1 U(CS2) \/1 atcj

Uto(s) = Y(s)c
Ul (s) = vi(s)ars

Enfin, en notant A} le quadrivecteur accélération et F} le quadrivecteur force, la premiére
loi de Newton nous dit que

On a

F! = mAl (2)
Or on sait que F} = (v:P;/c,vF}), ou P, = my3av; et Fy = mryja. En mettant tout ensemble,
on obtient
AD(s) = i(s)ais/c
Aj(s) = n(s) ar
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3. Le train est en train de partir avec une vitesse virain(s) = atrains, donc on peut noter les
facteurs associés au mouvement relatif entre le quai et le train

Bt—q(s) =

. i 1
Utraln(s) _ Otrain$ et ’)/t—q<3> N AV
1 — Bi—q(s)

C C

On note X;, U;' et Aé les quadrivecteurs précédents dans le référentiel du quai. A linstant
s, pour passer du référentiel du train a celui du quai, il nous faut faire un boost de vitesse

—atrains. ON obtient

Explicitement,

Xq(8) = Yi—q(8)[X7 (5) + Bi—q(5)X; (5)]
Xy (8) = 7e—q(8)[ X} (5) + Br—q(5) X7 (5)]
Ug (s) = 7i—q(8)[U(5) + Bi—q(s)U} ()]
Uy (5) = 71—q(8)[U}(5) + Bi—qg(s)UL (5)]
AY(5) = 71-q(s)[AL(s) + Br—q(5) AL (s)]
Ag(5) = 71-q(8)[AL (s) + Bi—g(5) AP (s)]

Xg(s) = Yi—q(8)[cs + Bi_g(8)ar5? /2] = Yi—q(5)[cs + atrainarsc ™! /2]

X4 (5) = —q(8)[ar5>/2 + Bi—q(s)es] = vu—q(5)[ars>/2 + arrains’]

U2(5) = Ye-q(5) () + g (3)70(5)a05] = - (5) () + atraimars?e™]

Uy (8) = Ye—q(s) () ars + Be—q(s)76(5)c] = 7e—q(5)7¢(5)]ars + atrains]

AQ(8) = Y- s)tais/c+ Bioq(s)e(s) ar] = y—q(s)n(s)*[afs/c + arrainarsc™]
AL(5) = Y0 g) (5 01 + Bo—q(5)1(5) 25 /€] = gl 70(5) 01 + atramadse?]

4. De maniere générale, en notant v,(s) la vitesse et q,(s) 'accélération de la voiture dans le
référentiel du quai, et en notant 4, le facteur de Lorentz associé au mouvement de la
voiture dans le référentiel du quai, nous avons

Uy (s) = 7q(s)e

U; (8) = Yq(8)vg(s)

Aq(s) = 7q(s) ag(s)vg(s)/c
Aq(8) = 7q(s) aq(s)

5. On cherche l’accélération de la voiture en fonction du temps dans le référentiel du quai
aq(ty). On peut déja chercher a4(s), puis trouver t,(s), inverser la fonction pour avoir s(t,) et
composer les deux fonctions. Pour avoir, nous pouvons égaler les deux manieres d’obtenir
Al(s). Mais U'expression générale de A (s) dépend de a,(s) et de v,(s) (qui dépend de vg(s)).
Donc nous devons commencer par trouver ~,(s). Pour ce faire, égalons les deux manieres
d’obtenir UJ(s). Nous avons

Donc

Ya(8)e = Uy (s) = v—q(s)1(s)[c + atrainars®c™]

1+ atrai(r:12ilt52
\/(1 _ agralns ) (1 _ a?s2>
c?
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Puis
Ya(8)aq(s) = Ay(s) = Yi—q(s)7e(5)*[ar + atrainai s”c ]

En développant les facteurs de Lorentz, ’équation donne

4
Qtrain Q- 82
(1 + traug2 t
2
(1 _ at2rain32> (1 _ a?s2>
2 2

Les facteurs se simplifient, pour avoir enfin

2
Qtraina+S
B 1+ r€i|(rl:|2
50q(s) = 2 5 at

2
1— ays 1— aZains?
c? c?

1— a%rai2,182
ag(s) = | "z | @
1 + atrai22at5

Enfin, on peut trouver s(t,) en rappelant que X(s) = ct,(s) et en égalisant les deux
maniéres de calculer X{(s). On obtient

. 3
cty(s) = X§(5) = ey s) s + 20T
C
Donc 08
rain t
o Slte) + S
I 1— a%rains(tq)2

c2

Puis en passant au carré

2
<1 . a‘%rain‘;(tq)Q) t? _ <S(tq) + atrainats(t4)3>

c 2c2

On obtient une équation polynomiale de degré 6 a résoudre pour obtenir s(t,). Cela veut
dire qu’il y a 6 solutions possibles. Mais en rappelant qu’on doit avoir s(0) = 0 et que s
grandit avec t,, une seule solution reste. En linsérant dans la formule précédente pour
aq(s), on obtient q,(t,). De cette maniere, on peut trouver 'accélération que posséde la
voiture télécommandée en fonction du temps, de notre point de vue.

Exercice 13 : Couleur des galaxies

La formule pour U'effet Doppler relativiste nous dit que si nous nous éloignons de la galaxie
a une vitesse v et qu’elle absorbe de la lumiére a une fréquence fy, nous observons une
fréquence manquante
1-p
1+8
Dans notre cas, nous voyons f = 550 nm, tandis que les scientifiques nous disent que

fo =450 nm. On a fy < f, donc 3 < 0 et nous nous rapprochons en fait de la galaxie. Pour savoir
a quelle vitesse nous nous rapprochons de la galaxie, développons la formule :

1—,6’_f:
1+8  f2

[ = Jo
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Donc en notant v la vitesse de la galaxie par rapport a nous, avec § = —v/c,

c+v=§,§(cv)
Puis
PR
2+ 13

En rentrant les valeurs explicites, nous obtenons

v=01lc=3x%x10" m.s~!

4 Energie

Exercice 14 : Dans la télévision

1. On suppose que les électrons sont au repos avant de traverser la tension, donc leur
énergie cinétique vaut 0 au début. Puis en traversant la tension, ils gagnent une énergie
cinétique de E. = 50 keV. En mécanique classique, nous avons

1
E. = imUQ

Donc les électrons atteignent en traversant la tension une vitesse

[2E,
v =
m

En sachant que ’énergie au repos est donnée par

E. =mc
Nous avons

v E

Z =, ]2=c

c E,

En rentrant les valeurs explicites, nous obtenons avec la mécanique classique une vitesse
atteinte de
v=0,442¢ = 1,32 x 10® m.s~!

2. En mécanique relativiste, 'expression de ’énergie cinétique devient

E,=(y—-1)mc* = (y—-1)E,

Donc E
C
Y= 1 + E@
Puis
1 v? — i
2 E.+E,
Donc
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Explicitement, on a
v=0,413¢=1,24 x 10°* m.s~!

On voit que avec les corrections apportées par la relativité restreinte, la vitesse obtenue
est plus élevée de environ 6%.

3. La différence entre les vitesses obtenues est de Av =8 x 10° m.s™!. Si 'on suppose trés
largement que cette différence de vitesse existe dés la création de ’électron, alors la
mécanique classique prédirait que U’électron arrive plus té6t qu’il n’arrive vraiment d’une
durée At = d/Av, avec d = 50 cm la distance que les électrons doivent traverser. On
obtient

At =6x10"%s =60 ns

C’est une durée de temps minuscule, qu’on peut facilement ne pas prendre en compte.
Les effets relativistes dans ce probléme sont négligeables, il n’est pas utile de les prendre
en compte.

Exercice 15 : Correction de ’énergie cinétique

L’énergie d’un objet allant a vitesse v est donnée par
E = ymdc?

Avec v = (1 — %)"Y/2 et B = v/c. Mais on peut décomposer cette énergie comme la somme
de son énergie au repos et de son énergie cinétique, et son énergie au repos est donnée par
Erepos = mc?. Donc U'énergie cinétique d’un objet est donnée par

E.=(y—1)mc* = (\/11752 - 1) mc?

Si Uobjet va a une vitesse beaucoup plus petite que celle de la lumiére, 3 et trés petit et /32
encore plus. En notant

f(@) = ( - 1) me? 3)

On a E. = f(B?) et pour une petite vitesse on a donc

1
Ee ~ [(0) + B2f(0) + 58" £(0) + ... 4)
Il s’agit alors simplement de dériver f. On a

f(x):<(1—g:)—%—1)mc2 et f(0)=0

@)= 30— ind et [(0) = gme?
fl@)= -2t et )= me

En insérant dans Uexpression pour E., on obtient comme premier terme 0, comme deuxiéme
terme )
2 01(0) — vil oo 1o,
= —-mc" = -mv
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ce qui est la formule classique pour ’énergie cinétique, et comme troisieme terme

1 4 ¢ 103 2 3 4 -2
56 f (0)250—417710 =gmv'e

ce qui est la premiére correction apportée par la relativité restreinte a la formule classique. La
formule corrigée a l'ordre de v* est
1

3
E.= imvz + gmv

4 -2

.

Exercice 16 : Annihilation de protons et antiprotons

1. (a) Le systeme considéré ne subit pas de forces extérieures et est fermé, donc le
quadrivecteur énergie-impulsion total est conservé. Au début, on a deux un proton
et un anti-proton au repos, chacun de quadrivecteur énergie-impulsion

éroton = (mpcv 0)
Donc le quadrivecteur total vaut
Plotal = (2mypce, 0)
En notant p; et ps> Uimpulsion de chaque photon émis, on a donc
Pr+pa=0
On en déduit qu’ils sont émis selon le méme axe dans des sens opposés, p; = po

(b) Comme les deux photons ont la méme quantité de mouvement, on la note simple-
ment p. En notant E; et F, 'énergie de chaque photon, on a pas conservation du
quadrivecteur énergie-impulsion total

Ei+ By = 2mp02

D’un autre c6té, comme les photons n’ont pas de masse, la norme de leur quadrivec-
teur énergie-impulsion est nulle et on a

B =Y = B}
On en déduit que les deux photons ont la méme énergie E, et que
2F = 2mpc2

Puis
E= mp62
Chaque photon a l’énergie au repos d’un proton.

(c) On sait que la longueur d’onde X\ d’un photon est donnée par

E = @ donc A= L
A myC

Avec my,c? =938 MeV et h = 6,62 x 1073* J.s = 4,14 x 1071 eV.s, on a donc
A=1,32x10""2m
Sur le spectre électromagnétique, cette longueur d’onde correspond a ’émission

d’un rayon gamma, comme attendu d’une annihilation de particules.
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2.

(a)

(b)

(c)

Quitte a tourner, on suppose que le mouvement se fait selon ’axe z, ou en d’autre
terme selon la premiere composante des quadrivecteurs. Le quadrivecteur énergie-
impulsion du proton est

Pg = (mye, 0) (5)

Tandis que celui de 'antiproton est
Pl = (Es/c, p, 0, 0)

Avec p limpulsion associée a Ep,

Le quadrivecteur total est
Ptiotal = (mpc+ Epc_lv D, 0, O)

Et la masse totale invariante du systeme est donnée par

2 2 _ i 2 __ —1\2 =2 __ 2.2 2 -2 2 —2 2.2
MipnyC¢ = ’Ptotal‘ _(mPC+EﬁC )" =D = myc +Eﬁc +2EﬁmP_Eﬁc - myc

Soit )
Miny = E\/ 2Eﬁmp

Le centre de masse d’un systéme est la moyenne des positions des objets du systeme,
pondérés par leurs masse effective’ ym

Fon = i vimady 1 Z’Y'm'f'
- - (2 1M
Zi Vit Etot y

Donc le référentiel du centre de masse d’un systeme est le référentiel tel que Zcy
ne dépend pas du temps,

. d 1 d 1
0= —Zey = R >
dt:ECM Frot ; Vil dtxz Frot ;pz

Autrement dit, le référentiel du centre de masse est définit comme le référentiel
dans lequel 'impulsion totale est nulle. Mais dans un systeme fermé, le quadrivecteur
énergie-impulsion est constant, et passer d’un référentiel galiléen au référentiel
du centre de masse ne demande qu’un boost de vitesse constante pour annuler
Uimpulsion totale constante, et une translation pour placer le centre de masse a
Uorigine. C’est donc aussi un référentiel galiléen. Notre expérience étant un systeme
fermé, son référentiel du centre de masse est bien galiléen.

Dans le centre de masse, le quadrivecteur énergie-impulsion prend la forme P/, =
(Ftotal/c,0). Mais la masse totale invariante ne change pas en fonction du référentiel,
autrement dit

2E15mp = ’P'ciotal|2 = |(Et0tal/cv 0)|2 = Et2otr—.\1l/c2

Comme on se retrouve dans une situation ou 'impulsion totale est nulle, comme pour
la premiére question, on trouve a nouveau que les deux photons sont émis selon le
méme axe mais dans des sens opposeés, et que les deux photons ont la méme énergie.

1. C’est la correction relativiste au centre de masse usuel. On voit que c’est en réalité plutét un centre d’énergie
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(d)

On note cette énergie Ey, de sorte a ce que le quadrivecteur énergie-impulsion prenne
la forme '
Ptlotal = <2E0/07 O)

En comparant les différentes expressions de P/ ., on voit

2E0/C = Etota[/c = 4/ 2Eﬁmp
Donc
Ezmpc?
2

Pour passer du référentiel du laboratoire au référentiel du centre de masse de
’expérience, il nous a fallu booster le référentiel pour annuler Uimpulsion totale

Ey =

(mpc+ Epcila p, 0, 0) — (2E0/C, 6)

On note Br_.cnm et vonm les facteurs associés a ce boost, avec
1

YL —CM = I e
\/ 1 - ﬂL—)CM

On voit en regardant la deuxieme composante

0 =vr—cm(P+ Brsom(mpe + Epe™)

Soit B
BrL—scm = S C—
- mpc + Epc™?

La transformation inverse, pour passer du référentiel du centre de masse au référen-
tiel du laboratoire, correspond a un boost de vitesse opposée, donc avec

VYOM—L = YL—CM
Bov—r1 = —BrLscm

On veut transformer le quadrivecteur énergie-impulsion des deux photons pour les
passer dans le référentiel du laboratoire. On a vu que de maniere générale, un photon
a une masse nulle et donc
E%/c* —p* =0 soit p=FE/c
Dans notre cas, cela veut dire que le quadrivecteur énergie-impulsion des photons
dans le référentiel du centre de masse prend la forme
Py = (Eo/e, +Eo/c, 0, 0)

Avec P! le quadrivecteur du photon allant dans le méme sens que l'antiproton, et
P! celui du photon allant dans le sens opposé. Dans le référentiel du laboratoire,
’énergie des photons prend la forme

Ei/c=~vcm—i(Eo/cF Bom—rEo/c) (6)
Soit
Er =vom(1F Bom—r)Eo (7

Ou les expressions explicites de v, o, Bom—1 et Ep ont été données précédemment.
On rappelle que Beoy—r < 0, et donc que F. > Ey > E_. Le photon allant dans le
méme sens que l'antiproton a plus d’énergie que celui allant dans le sens opposé.
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(e) On utilise a nouveau

he
A= —
E

Et on note Ay = h¢/Ey la longueur d’onde des deux photons dans le référentiel du
centre de masse. Le photon allant dans le sens de lantiproton a pour longueur

d’onde
\ he . \/1_/8%]\/[~>L)\ B 1+BC]\/[_>L>\O

p— j— 0 p—
T yisem( = Bov—r)Eo 1 - Bev—r 1—Bem=e

Tandis que celui allant dans le sens opposé a pour longueur d’onde

2
. he - 50M—>L)\ _ 1= Pevor,

= = 0= 0
Yo—cm (1 + Benv—r)Eo 1+ Bom—r 1+ Bom—r

On reconnait la formule pour Ueffet Doppler relativiste. En se rappellant que Boar,
est négatif, on voit que le photon allant dans le sens de l'antiproton a une longueur
d’onde plus courte que celle de 'autre photon. Il a été décalé vers le bleu, alors que
lautre a été décalé vers le rouge.

Exercice 17 : Désintégration de neutrons

1. On se place dans le référentiel du neutron. Le systeme est fermé et avant désintégration,
le systeme n’est constitué que du neutron au repos. On a donc le quadrivecteur énergie-
impulsion total qui vaut

Potal = (mac, 6)

Apres désintégration, on note Pg, P! et P! les quadrivecteurs énergie-impulsion du proton,
de l’électron et de l'anti-neutrino. On décompose aussi ces quadrivecteurs de maniére
générale en P' = (E,p).Par conservation de P/ ., on a

Ey+ FEo4 Ey =muc® et §,+p.+py=0

Comme on s’intéresse au mouvement de l’électron, on peut regrouper les quadrivecteurs
du proton et de l’antineutrino ensemble

Pi

ptv =Fp + By

Ee+ Epip = mnc2 et De+ Pprv = 0

En particulier, on a

2 -2 2 2_ .2 _ 2 _ 12 -2 2 2
EppC " = My pC” = Py = Pe = Eee™™ —mec
Donc
1
2 2y 2 2 -2 2 -2
(Mypyp = me)e” = Byype™ = Boe™ = 5 (Bpio — Ee)(Bpio + Ee) = (Epip — Ee)ma
Et
oy 2 2
— (M —mg) = mpc” — 2E,
mn
Donc
¢ 2 2 2
e = (mg +my, —mz, ;)
2m,, e n P+
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Dans cette expression, m. et m, sont des constantes donc la seule chose qui peut
changer est m,, la masse totale du systeme constitué du proton et de ’anti-neutrino.
Pour maximiser [’énergie de l’électron, on veut minimiser cette masse totale. Comme
c’est une masse, c’est la longueur d’un quadrivecteur, elle ne change pas en fonction
du référentiel et on peut se placer dans le référentiel du centre de masse du systéme
proton-anti-neutrino. Dans ce référentiel, la quantité de mouvement totale est nulle
et donc m,,; est égal a la somme des énergies du proton et de ’anti-neutrino dans
ce référentiel, a un facteur ¢ prés. On veut donc minimiser ’énergie du proton et de
antineutrino dans le référentiel de leur centre de masse, minimum atteint quand ils sont
tous les deux au repos dans ce référentiel. On en conclut que m,; est minimal quand le
proton et l'anti-neutrino sont au repos dans leur centre de masse, donc quand ils vont a
la méme vitesse. Dans ce cas,

Mp+pminC = Epip.om/c = mpe+ mpe

Et Uénergie maximale que peut avoir ’électron est

2 2

C C
Ee max = e (m? +my — (mp +mp)?) =~ ﬁ(mi +mp, —m)
n n
En insérant les valeurs données, on obtient
EEVmaX == 1’ 29 MeV (8)

2. On a vu que l’électron atteint son énergie maximale quand ’anti-neutrino et le proton
vont a la méme vitesse, qui est aussi la vitesse de leur centre de masse. Or de maniere
générale, on a

9 Ev 2

donc — =~vymv donc wv= pe.

E= =
ymce =2 T

En appliquant cette formule au systéme p+ 7, on a

Vp = Upsp = pp+1702
v — v —

P Ep—h‘/
Mais par la conservation du quadrivecteur énergie-impulsion total écrite plus haut, on
peut transformer cette équation en

pec?

’UI; = —m—-—--—-
mn02 - Ee,max

Par ailleurs, on a p, = \/Eg’maxc*2 —m2c?, et donc la vitesse de l'anti-neutrino est donnée

par
/2 2.4
c Eamax — mic

mn02 - Ee,max

Vp =

Ayant déja calculé explicitement E. max, on peut donner la valeur de la vitesse de l'anti-
neutrino
vy =1,27Tx 1072 ¢ = 3,82 x 10° m.s~!
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