
1 Généralités

Exercice 1 : Le Flash

1. Supposons que le Flash va à une vitesse v et notons γ le facteur de Lorentz associé.
Une durée mesurée dans le référentiel fixe ∆t sera perçue comme γ∆t par le Flash. De
son point de vue, le temps est effectivement ralenti d’un facteur γ. On cherche donc la
vitesse v2 telle que γ = 2. On a

2 = γ =
1√

1− v22
c2

Donc
4

(
1− v22

c2

)
= 1

Puis
v22
c2

=
3

4

Et donc

v2 =

√
3

2
c

En prenant c ≃ 3× 108 m.s−1, on obtient que le Flash court à une vitesse 2, 6× 108 m.s−1

2. La police nous apprend que la distance entre le repère et la ville est de 8 km si mesurée
dans un repère fixe. Or si le Flash court à une vitesse v et avec γ le facteur de Lorentz
associé, les distances fixes qu’il perçoit sont réduites d’un facteur 1/γ. Si il a mesuré une
distance de 5 km entre la ville et le repère, c’est donc que

5

8
=

1

γ
=

√
1− v2

c2

Ainsi, on a
v2

c2
= 1− 25

64
=

39

64

Donc

v =

√
39

8
c

Avec la calculatrice, on trouve que le Flash courait à une vitesse de 2, 3× 108 m.s−1.

Exercice 2 : L’élixir de jeunesse

1. Lorsque l’on voyage beaucoup, on est souvent en mouvement par rapport au référentiel
fixe. Mais lorsque l’on bouge puis que l’on retourne au référentiel fixe, moins de temps
se sera écoulé pour nous que pour ceux restés dans le référentiel fixe. Ce faisant, nous
ralentissons donc effectivement notre vieillissement.
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2. Si une personne voyage à une vitesse v pendant une durée ∆t mesurée dans le référentiel
fixe, alors la personne aura vécu un voyage d’une durée 1

γ∆t avec γ le facteur de Lorentz
associé à v. À basse vitesse, pour v très petit devant c, on a

1

γ
=

(
1− v2

c2

) 1
2

≃ 1− v2

c2

Si un pilote de ligne passe une durée ∆t à piloter des avions au cours de sa carrière, il
aura perçu cette durée comme

∆t

(
1− v2

c2

)
Et aura donc effectivement ralenti son vieillissement d’un temps

∆tgagné =
v2∆t

c2

Pour une vitesse v et une durée ∆t données par

v = 900 km.h−1 = 250 m.s−1 et ∆t = 30× 200× 5 h = 30× 103 h = 108× 106 s

avec c ≃ 3× 108 m.s−1, on calcule que le pilote de ligne a ralenti son vieillissement de

∆tgagné = 7, 5× 10−5 s = 75 µs

3. On réutilise la même formule ∆tgagné = v2c−2∆t. Cette fois-ci on a pour vitesse et durée

v = 30 km.h−1 = 8, 3 m.s−1 et ∆t = 5× 200× 1 h = 103 h = 3, 6× 106 s

Donc l’étudiant ralenti son vieillissement de

∆tgagné = 2, 8× 10−9 s = 2, 8 ns

En comparaison, la lumière peut se déplacer d’environ un mètre pendant ce laps de
temps.

Exercice 3 : Muons dans l’atmosphère

1. Le temps mis à parcourir une distance h à vitesse v est t = h
v . Ici, h = 104 m et la vitesse

v = c ≈ 3× 108 m.s−1. Donc le temps pris par la lumière pour atteindre le sol depuis une
hauteur de 15 km est d’environ 3× 10−5 s. C’est plus de dix fois le temps de vie moyen
d’un muon. Sachant qu’un muon va nécessairement plus lentement que la lumière, on
s’attendrait en physique non-relativiste à ce qu’il soit presque impossible pour un muon
d’atteindre le sol.

2. La relativité restreinte dit que lorsqu’un objet va vite, les longueurs de son point de vue
se contractent. À grande vitesse, un muon voit sa distance au sol réduire, et peut donc
l’atteindre à temps. De notre point de vue, le temps propre du muon ralentit, et cela
rallonge son temps de vie.

3. En supposant qu’il va à une vitesse v, il prend dans notre référentiel un temps t = h
v à

atteindre le sol. Or on sait que le muon perçoit nos durées comme dilatées d’un facteur
γ, le facteur de Lorentz.

γ =
1√

1− v2

c2
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De son point de vue, il prend donc un temps

∆tmuon =
h

γv

4. (a) Notons v sa vitesse, avec γ le facteur de Lorentz associé. Si il se désintègre après
avoir vécu un temps τ0, il faut que

τ0 ≥
h

γv

Soit en passant au carré

τ20 v
2 ≥ h2

(
1− v2

c2

)
En développant et regroupant, on a

v2 ≥ h2

τ20 + h2

c2

Sachant que la vitesse doit être positive, on peut prendre la racine de chaque côté

v ≥ h√
τ20 + h2

c2

Comme on a le temps propre avec 4 chiffres significatifs, on prend c = 2, 998 m.s−1.
C’est nécessaire pour ne pas avoir vmin = c. En rentrant les valeurs dans la formule,
on obtient comme vitesse minimale

vmin = 2, 995× 108 m.s−1

Le facteur de Lorentz associé est

γmin =
1√

1− v2min
c2

= 17, 33

Sachant que l’énergie en mouvement est donnée par γ fois l’énergie au repos, on a
donc

Emin = γminmµc
2 = 1, 83 GeV

(b) En notant E0 l’énergie du muon au repos et γ son facteur de Lorentz par rapport à
nous, on voit que

γ =
E

E0

Avec
E2

E2
0

= γ2 =
1

1− v2

c2

On a
E2

E2
0

− 1 =
E2v2

E2
0c

2

Donc
v2 =

c2

E2

(
E2 − E2

0

)
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Encore une fois, on peut passer à la racine puis utiliser la formule de la question (3),
pour voir que le muon atteint le sol après avoir vécu une durée

∆t =
h

γv
=

hE0

c
√

E2 − E2
0

La probabilité que le muon atteigne le sol est donc de

P = e
− hE0

τ0c
√

E2−E2
0

En rentrant les valeurs explicites, on obtient une probabilité de

P = 44, 8%

Exercice 4 : Hulk

1. On note e⃗x la direction du mouvement de la voiture, et e⃗y la direction du ciel. On peut
décomposer la longueur L de la voiture en deux parties : la longueur Lx selon e⃗x et la
longueur Ly selon e⃗y. On a

Lx = L cos(θ) et Ly = L sin(θ)

Et par le théorème de Pythagore,
L2
x + L2

y = L2

Maintenant, on sait que la voiture bouge dans le sens de e⃗x à une vitesse v = 2×108 m.s−1,
et ne bouge pas du tout dans le sens de e⃗y. Donc dans le référentiel fixe, Ly ne change
pas mais Lx se contracte d’un facteur 1/γ. Du point de vue du méchant qui ne bouge pas,
la longueur de la voiture est donc par le théorème de Pythagore

L′ =

√
1

γ2
L2
x + L2

y =

√
(1− β2)L2 cos(θ)2 + L2 sin(θ)2

Mais cos(θ)2 + sin(θ)2 = 1 et donc

L′ = L

√
1− β2 cos(θ)2

Dans notre cas, L = 4 m, θ = π/4 et β = v/c = 2/3. On calcule la longueur de la voiture que
le méchant se prend

L′ = 3, 5 m

2. On a déjà vu que Lx devient 1
γLx à cause de la vitesse, tandis que Ly reste fixe. On peut

donc calcule le nouvel angle à l’aide de la fonction arc tangente

θ′ = arctan

(
Ly
1
γLx

)
= arctan

(
γ
sin(θ)

cos(θ)

)
= arctan (γ tan(θ))

Avec la calculatrice, on obtient

θ′ = 0, 93 radians = 53 degrés
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2 L’Espace de Minkowski

Exercice 5 : Modéliser un trou noir

1. Un objet avance dans son futur, il ne peut pas aller dans son ailleurs ou dans son passé.
Or le futur d’un objet dans le futur, est dans le futur. Autrement dit, si un objet est dans
le futur, il ne peut que continuer à être dans le futur. Le même raisonnement est valable
avec les cônes de lumière, ce qui fait que de la lumière qui commence dans le futur ne
peut que rester dans le futur.

2. La trajectoire d’un objet avance nécessairement dans le temps et finit à un temps infini,
alors que le passé finit à un temps t = 0. Donc tout objet est obligé de sortir du passé à
un moment ou un autre. Le même argument est valable pour la lumière.

3. (a) En suivant une trajectoire au repos dans le référentiel que nous utilisons, un objet
finira toujours dans le futur

(b) Le futur d’un objet dans notre ailleurs est dans notre futur ou notre ailleurs, pas
notre passé. Comme un objet ne peut aller que dans son futur, il ne peut pas aller
dans le passé.

(c) Si il est au repos, il suit une trajectoire rectiligne dans le référentiel que nous utilisons.
Il va à une vitesse fixe v < c. Or comme le futur grandit à une vitesse c > v, l’objet
finira forcément dans le futur.

(d) En général, l’objet peut accélérer constamment. Une accélération constante ne
permet pas de dépasser la vitesse de la lumière mais permet de s’en approcher
infiniment. Ainsi, un objet finira toujours par se rapprocher infiniment proche du
cône de lumière futur. Mais avec une accélération constante il est possible de ne
jamais le traverser et de toujours rester dans l’ailleurs.

4. (a) En utilisant les mêmes arguments que précédemment, on voit que la lumière peut
facilement entrer dans le futur mais ne peut jamais entrer dans le passé.

(b) La lumière va à la même vitesse que l’expansion du cône futur, c. Donc si la lumière
se dirige dans une direction opposé au futur, elle peut se maintenir dans l’espace à
une distance du futur constante à travers le temps. Par contre, elle ne peut pas s’en
éloigner. À chaque fois que la lumière se rapproche du futur en allant un peu dans
sa direction, elle s’en rapproche de manière irréversible.

Le futur et l’ailleurs proches du cône de lumière futur modélisent très bien la zone proche de
la surface d’un trou noir, que ce soit l’intérieur du trou noir proche de la surface dans le cas
du futur, ou l’extérieur du trou noir proche de la surface dans le cas de l’ailleurs. Il en va de
même pour le passé qui modélise la surface d’un trou blanc.

Exercice 6 : Coincer la lumière

Un objet sans masse se déplace nécessairement à la vitesse de la lumière, c. En particulier,
un tel objet ne peut pas ralentir. Or avec une seule dimension spatiale, il faut nécessairement
ralentir pour faire demi-tour. L’objet ne peut donc que soit aller à droite pour toute sa vie, soit
aller à gauche pour toute sa vie. Formellement, deux trajectoires sont possibles. Avec t(s) = s
et en supposant que la trajectoire passe par l’origine, soit x(s) = cs soit x(s) = −cs. Une théorie
d’objets sans masses est donc la somme de deux théories découplées : celle constituée des
objets allant à droite, et celle constituée des objets allant à gauche.

Exercice 7 : Géométrie dans l’espace de Minkowski
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1. On fixe L. En 2 dimensions, le cercle de rayon L est l’ensemble des points aux coordonnées
(t, x) tel que la distance entre (x, y) et (0, 0) soit L. Mais cette distance est l’intervalle de
Lorentz,

∆s2 = c2(t− 0)2 − (x− 0)2 = t2 − x2

On cherche donc les points (t, x) tel que

L2 = c2t2 − x2

C’est l’équation d’une hyperbole de centre 0, ayant pour asymptotiques les cônes lumières,
et de sommets (L, 0) et (−L, 0). Le "cercle" est dessiné en bleu ci-dessous.

2. Soit un triangle équilatéral ABC dans l’espace de Minkowski. Comme la géométrie de
l’espace est invariante sous translation, on peut bouger le triangle équilatéral dans
l’espace et il sera toujours équilatéral. En particulier, on peut supposer que A est l’origine
sans perte de généralité. On note aussi la longueur de ses côtés L > 0. Alors B et C sont
sur le cercle de longueur L passant par l’origine que l’on a tracé auparavant. Traçons un
deuxième cercle de longueur L de centre B, comme représenté ci-contre.

Alors C est alors un point où les deux cercles se croisent. Mais les cercles ne se croisent
jamais. Un cercle de centre X est inclut dans le passé et le futur de X , et ne passe jamais
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par son ailleurs. Or la partie future du cercle de centre A est dans l’ailleurs de B, et ne
croise donc jamais le cercle de centre B. De même, la partie passée du cercle de centre
A est dans le passé de B et ne peut donc croiser que la partie passé du cercle de centre
B, mais cette partie est dans l’ailleurs de A. Ainsi, il n’existe pas de triangle équilatéral
dans l’espace de Minkowski en 2 dimensions.

3 Trajectoires et Mouvement

Exercice 8 : Trajectoires non-galiléennes

1. Si l’on effectue une rotation de π radians ou 180 degrés autours de l’axe des y ou l’axe des
z, x devient −x et vice versa. La trajectoire bleue devient la trajectoire verte, et vice versa.
En considérant notre référentiel comme galiléen, les lois de la physique ne changent
pas sous une rotation et donc nos deux amis vivent la même chose. En particulier, il
vieillissent tous deux exactement pareil.

2. Comme nos deux amis vivent exactement la même chose, on ne s’intéresse qu’à notre
ami vert sans perte de généralité.
(a) La trajectoire de notre ami vert est donnée par

x(t) = v0t−
a

2
t2

À t0 = 0, x(t0) = 0 : il part du vaisseau. L’instant tf où il revient est le deuxième instant
tel que x(tf ) = 0, après le départ. On cherche donc tf tel que

v0tf − a

2
t2f = 0

Soit
tf (v0 −

a

2
tf ) = 0

De notre point de vue, la durée prise par nos deux amis pour revenir est

∆t = tf − t0 = tf =
2v0
a

(b) Du point de vue de notre ami vert, le temps s’écoule plus vite d’un facteur 1
γ , avec γ

le facteur de Lorentz associé à sa vitesse. Comme sa vitesse change tout le temps, γ
change aussi. Étant donné un instant t entre t0 et tf , sa vitesse est donnée par

v(t) =
dx
dt

(t) = v0 − at

Donc le facteur γ à cet instant vaut γt =
1√

1− (v0−at)2

c2

Ainsi, en intégrant sur tous les

instants de la trajectoire, on voit que nos amis ressentent passer un temps

∆t′ =

tfˆ

t0

1

γ
dt =

1

c

tfˆ

t0

√
c2 − (v0 − at)2 dt (1)

Pour une petite vitesse, on retrouve approximativement ∆t′ = tf − t0. Cependant,√
c2 − (v0 − at)2 ≤ c

et donc on voit bien que ∆t′ ≤ ∆t.
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3. Les deux amis vont du point (t0, 0, 0, 0) au point (tf , 0, 0, 0) de l’espace-temps, dans notre
référentiel. Or on sait qu’il existe une seule trajectoire qui prend un maximum de temps
pour aller d’un point à l’autre : la trajectoire galiléenne, représentée par une ligne droite
dans n’importe quel référentiel galiléen. En se plaçant dans le référentiel de notre ami
bleu, qui est un référentiel galiléen, on voit bien que lui-même se déplace en ligne droite
tandis que notre ami vert suit une trajectoire courbe. Ainsi, notre ami bleu perçoit plus
de temps s’écouler avant de rentrer sur le vaisseau, et a plus vieillit que notre ami vert.

Exercice 9 : Des horloges qui voyagent

Il faut ici prendre en compte le fait que la Terre est ronde, et qu’elle tourne sur elle-même.
Le soleil se lève à l’est et se couche à l’ouest, donc la Terre tourne sur-elle même vers l’est. Se
déplacer vers l’ouest revient donc à aller à contre-sens de la Terre et à moins nous déplacer
par rapport au soleil, que l’on peut considérer comme un référentiel fixe galiléen, alors que se
déplacer vers l’est revient à se rajouter encore plus de vitesse par rapport au déplacement de
la Terre. Si l’on se place dans le référentiel du soleil et qu’on regarde les trajectoires dans
l’espace-temps, ce sont les horloges qui sont parties vers l’ouest qui ont la trajectoire la plus
proche d’une ligne droite, puis les horloges restées sur place, puis celles parties vers l’est.
Autrement dit, ce sont les horloges parties vers l’ouest qui ont vu le plus de temps s’écouler,
puis les horloges restées sur place, puis les horloges parties vers l’est. Cela explique que les
horloges parties vers l’est ont accumulé du retard, alors que celles parties vers l’ouest ont
accumulé de l’avance.

Exercice 10 : Superman

Il nous faut ici composer la vitesse vs de Superman avec la vitesse vl de sa lance. Or la
formule de composition des vitesses nous dit que la vitesse composée v′ est donnée par

v′ =
vs + vl
1 + vsvl

c2

Avec vs = vl = c/2, on voit que la lance fonce sur l’ennemi de Superman à une vitesse

v′ =
c

1 + 1
4

=
4

5
c = 2, 4× 108 m.s−1

Exercice 11 : Compétition alien

On note e⃗x la direction d’un des vaisseaux extraterrestres que l’on va nommer X, e⃗y la
direction de l’autre vaisseau que l’on va nommer Y , et v leur vitesse vues du référentiel
terrestre. On cherche à trouver la vélocité v⃗v de Y vue dans le référentiel propre de X, sans
perte de généralité. On peut décomposer cette vélocité en deux, entre la partie vv,x qui va dans
la direction e⃗x et la partie vv,y qui va dans la direction e⃗y. Sous le boost permettant d’aller du
référentiel de la Terre au référentiel de X , on sait que le temps se fait dilater par un facteur γ,
tout comme les distances selon e⃗x, tandis que les distances selon e⃗y ne changent pas. Pour
les vitesses qui sont des unités de distance divisées par des unités de temps, cela veut dire
qu’une vitesse selon e⃗x ne changent pas alors qu’une vitesse selon e⃗y se fait transformer par
un facteur 1

γ .
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Dans le référentiel de X, deux choses contribuent au mouvement de Y : le mouvement de
Y vers la Terre et le mouvement général de la Terre et de Y vers X. Le mouvement de Y vers
la Terre se fait dans la direction e⃗y et est donc réduit d’un facteur 1/γ lorsque l’on passe dans
le référentiel de X . D’un autre côté, le mouvement de la Terre et de Y se fait dans la direction
e⃗x et ne change pas avec le changement de référentiel. On a donc vv,y = 1

γ v, tandis que vv,x = v.
Par le théorème de Pythagore, on trouve la vitesse totale

vv =
√

v2v,x + v2v,y =

√
v2 +

1

γ
v2 = v

√
2− v2

c2

Pour un petit v, on obtiendrait bien v′ =
√
2 v comme attendu. Avec v = 0.9c, on obtient

vv = 1, 04 v = 0.940 c = 2, 82× 108 m.s−1

Il est bien entendu aussi possible de retrouver ce résultat de manière plus propre mais plus
calculatoire, en passant par les formules de transformation de quadrivecteur.

Exercice 12 : Accélération dans une accélération

1. Nous pouvons fixer un paramètre s qui suit le temps dans le référentiel du train, tt(s) = s.
L’indice t est là pour indiquer que c’est le temps du train. L’accélération de la voiture
télécommandée étant constante, on la note at par abus de langage de sorte à avoir
at(s) = at. Puis en intégrant selon t = s, on a vt(s) = ats et xt(s) = ats

2/2.

2. Comme tout le problème va selon une seule direction spatiale, nous ne considérerons
que les deux premières composantes des quadrivecteurs, les deux dernières étant égales
à 0. En notant Xi

t le quadrivecteur position et en injectant directement la trajectoire
calculée à la question d’avant, on a

X0
t (s) = cs

X1
t (s) = ats

2/2

Le quadrivecteur vitesse U i
t est donné par (γc, γv). En notant le facteur de Lorentz associé

au mouvement de la voiture dans le référentiel du train

γt(s) =
1√

1− v(s)2

c2

=
1√

1− a2t s
2

c2

On a
U0
t (s) = γt(s)c

U1
t (s) = γt(s)ats

Enfin, en notant Ai
t le quadrivecteur accélération et F i

t le quadrivecteur force, la première
loi de Newton nous dit que

F i
t = mAi

t (2)

Or on sait que F i
t = (γtPt/c, γtFt), où Pt = mγ3atvt et Ft = mγ3t a. En mettant tout ensemble,

on obtient
A0

t (s) = γt(s)
4a2t s/c

A1
t (s) = γt(s)

4at
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3. Le train est en train de partir avec une vitesse vtrain(s) = atrains, donc on peut noter les
facteurs associés au mouvement relatif entre le quai et le train

βt−q(s) =
vtrain(s)

c
=

atrains

c
et γt−q(s) =

1√
1− βt−q(s)2

On note Xi
q, U i

q et Ai
q les quadrivecteurs précédents dans le référentiel du quai. À l’instant

s, pour passer du référentiel du train à celui du quai, il nous faut faire un boost de vitesse
−atrains. On obtient

X0
q (s) = γt−q(s)[X

0
t (s) + βt−q(s)X

1
t (s)]

X1
q (s) = γt−q(s)[X

1
t (s) + βt−q(s)X

0
t (s)]

U0
q (s) = γt−q(s)[U

0
t (s) + βt−q(s)U

1
t (s)]

U1
q (s) = γt−q(s)[U

1
t (s) + βt−q(s)U

0
t (s)]

A0
q(s) = γt−q(s)[A

0
t (s) + βt−q(s)A

1
t (s)]

A1
q(s) = γt−q(s)[A

1
t (s) + βt−q(s)A

0
t (s)]

Explicitement,

X0
q (s) = γt−q(s)[cs+ βt−q(s)ats

2/2] = γt−q(s)[cs+ atrainats
3c−1/2]

X1
q (s) = γt−q(s)[ats

2/2 + βt−q(s)cs] = γt−q(s)[ats
2/2 + atrains

2]

U0
q (s) = γt−q(s)[γt(s)c+ βt−q(s)γt(s)ats] = γt−q(s)γt(s)[c+ atrainats

2c−1]

U1
q (s) = γt−q(s)[γt(s)ats+ βt−q(s)γt(s)c] = γt−q(s)γt(s)[ats+ atrains]

A0
q(s) = γt−q(s)[γt(s)

4a2t s/c+ βt−q(s)γt(s)
4at] = γt−q(s)γt(s)

4[a2t s/c+ atrainatsc
−1]

A1
q(s) = γt−q(s)[γt(s)

4at + βt−q(s)γt(s)
4a2t s/c] = γt−q(s)γt(s)

4[at + atraina
2
t s

2c−2]

4. De manière générale, en notant vq(s) la vitesse et aq(s) l’accélération de la voiture dans le
référentiel du quai, et en notant γq le facteur de Lorentz associé au mouvement de la
voiture dans le référentiel du quai, nous avons

U0
q (s) = γq(s)c

U1
q (s) = γq(s)vq(s)

A0
q(s) = γq(s)

4aq(s)vq(s)/c

A1
q(s) = γq(s)

4aq(s)

5. On cherche l’accélération de la voiture en fonction du temps dans le référentiel du quai
aq(tq). On peut déjà chercher aq(s), puis trouver tq(s), inverser la fonction pour avoir s(tq) et
composer les deux fonctions. Pour avoir, nous pouvons égaler les deux manières d’obtenir
A1

q(s). Mais l’expression générale de A1
q(s) dépend de aq(s) et de γq(s) (qui dépend de vq(s)).

Donc nous devons commencer par trouver γq(s). Pour ce faire, égalons les deux manières
d’obtenir U0

q (s). Nous avons

γq(s)c = U0
q (s) = γt−q(s)γt(s)[c+ atrainats

2c−1]

Donc

γq(s) = U0
q (s) =

1 + atrainats2

c2√(
1− a2trains2

c2

)(
1− a2t s

2

c2

)
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Puis
γq(s)

4aq(s) = A1
q(s) = γt−q(s)γt(s)

4[at + atraina
2
t s

2c−2]

En développant les facteurs de Lorentz, l’équation donne(
1 + atrainats2

c2

)4
(
1− a2trains2

c2

)2 (
1− a2t s

2

c2

)2aq(s) = 1 + atrainats2

c2(
1− a2t s

2

c2

)2√
1− a2trains2

c2

at

Les facteurs se simplifient, pour avoir enfin

aq(s) =


√
1− a2trains2

c2

1 + atrainats2

c2

3

at

Enfin, on peut trouver s(tq) en rappelant que X0
q (s) = ctq(s) et en égalisant les deux

manières de calculer X0
q (s). On obtient

ctq(s) = X0
q (s) = γt−q(s)[cs+

atrainats
3

2c
]

Donc

tq =
s(tq) +

atrainats(tq)3

2c2√
1− a2trains(tq)2

c2

Puis en passant au carré(
1− a2trains(tq)

2

c2

)
t2q =

(
s(tq) +

atrainats(tq)
3

2c2

)2

On obtient une équation polynomiale de degré 6 à résoudre pour obtenir s(tq). Cela veut
dire qu’il y a 6 solutions possibles. Mais en rappelant qu’on doit avoir s(0) = 0 et que s
grandit avec tq, une seule solution reste. En l’insérant dans la formule précédente pour
aq(s), on obtient aq(tq). De cette manière, on peut trouver l’accélération que possède la
voiture télécommandée en fonction du temps, de notre point de vue.

Exercice 13 : Couleur des galaxies

La formule pour l’effet Doppler relativiste nous dit que si nous nous éloignons de la galaxie
à une vitesse v et qu’elle absorbe de la lumière à une fréquence f0, nous observons une
fréquence manquante

f =

√
1− β

1 + β
f0

Dans notre cas, nous voyons f = 550 nm, tandis que les scientifiques nous disent que
f0 = 450 nm. On a f0 < f , donc β < 0 et nous nous rapprochons en fait de la galaxie. Pour savoir
à quelle vitesse nous nous rapprochons de la galaxie, développons la formule :

1− β

1 + β
=

f2

f2
0
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Donc en notant v la vitesse de la galaxie par rapport à nous, avec β = −v/c,

c+ v =
f2

f2
0

(c− v)

Puis
v =

f2 − f2
0

f2 + f2
0

c

En rentrant les valeurs explicites, nous obtenons

v = 0.1c = 3× 107 m.s−1

4 Énergie

Exercice 14 : Dans la télévision

1. On suppose que les électrons sont au repos avant de traverser la tension, donc leur
énergie cinétique vaut 0 au début. Puis en traversant la tension, ils gagnent une énergie
cinétique de Ec = 50 keV. En mécanique classique, nous avons

Ec =
1

2
mv2

Donc les électrons atteignent en traversant la tension une vitesse

v =

√
2Ec

m

En sachant que l’énergie au repos est donnée par

Ee = mc2

Nous avons
v

c
=

√
2
Ec

Ee

En rentrant les valeurs explicites, nous obtenons avec la mécanique classique une vitesse
atteinte de

v = 0, 442c = 1, 32× 108 m.s−1

2. En mécanique relativiste, l’expression de l’énergie cinétique devient

Ec = (γ − 1)mc2 = (γ − 1)Ee

Donc
γ = 1 +

Ec

Ee

Puis √
1− v2

c2
=

Ee

Ee + Ec

Donc

v = c

√
1− E2

e

(Ee + Ec)2
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Explicitement, on a
v = 0, 413c = 1, 24× 108 m.s−1

On voit que avec les corrections apportées par la relativité restreinte, la vitesse obtenue
est plus élevée de environ 6%.

3. La différence entre les vitesses obtenues est de ∆v = 8× 106 m.s−1. Si l’on suppose très
largement que cette différence de vitesse existe dès la création de l’électron, alors la
mécanique classique prédirait que l’électron arrive plus tôt qu’il n’arrive vraiment d’une
durée ∆t = d/∆v, avec d = 50 cm la distance que les électrons doivent traverser. On
obtient

∆t = 6× 10−8 s = 60 ns

C’est une durée de temps minuscule, qu’on peut facilement ne pas prendre en compte.
Les effets relativistes dans ce problème sont négligeables, il n’est pas utile de les prendre
en compte.

Exercice 15 : Correction de l’énergie cinétique

L’énergie d’un objet allant à vitesse v est donnée par

E = γmc2

Avec γ = (1 − β2)−1/2 et β = v/c. Mais on peut décomposer cette énergie comme la somme
de son énergie au repos et de son énergie cinétique, et son énergie au repos est donnée par
Erepos = mc2. Donc l’énergie cinétique d’un objet est donnée par

Ec = (γ − 1)mc2 =

(
1√

1− β2
− 1

)
mc2

Si l’objet va à une vitesse beaucoup plus petite que celle de la lumière, β et très petit et β2

encore plus. En notant

f(x) =

(
1√
1− x

− 1

)
mc2 (3)

On a Ec = f(β2) et pour une petite vitesse on a donc

Ec ≈ f(0) + β2f ′(0) +
1

2
β4f ′′(0) + . . . (4)

Il s’agit alors simplement de dériver f . On a

f(x) =
(
(1− x)−

1
2 − 1

)
mc2 et f(0) = 0

f ′(x) =
1

2
(1− x)−

3
2mc2 et f ′(0) =

1

2
mc2

f ′′(x) =
3

4
(1− x)−

5
2mc2 et f ′(0) =

3

4
mc2

En insérant dans l’expression pour Ec, on obtient comme premier terme 0, comme deuxième
terme

β2f ′(0) =
v2

c2
1

2
mc2 =

1

2
mv2
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ce qui est la formule classique pour l’énergie cinétique, et comme troisième terme

1

2
β4f ′′(0) =

1

2

v4

c4
3

4
mc2 =

3

8
mv4c−2

ce qui est la première correction apportée par la relativité restreinte à la formule classique. La
formule corrigée à l’ordre de v4 est

Ec =
1

2
mv2 +

3

8
mv4c−2

Exercice 16 : Annihilation de protons et antiprotons

1. (a) Le système considéré ne subit pas de forces extérieures et est fermé, donc le
quadrivecteur énergie-impulsion total est conservé. Au début, on a deux un proton
et un anti-proton au repos, chacun de quadrivecteur énergie-impulsion

P i
proton = (mpc, 0⃗)

Donc le quadrivecteur total vaut

P i
total = (2mpc, 0⃗)

En notant p⃗1 et p⃗2 l’impulsion de chaque photon émis, on a donc

p⃗1 + p⃗2 = 0⃗

On en déduit qu’ils sont émis selon le même axe dans des sens opposés, p⃗1 = p⃗2
(b) Comme les deux photons ont la même quantité de mouvement, on la note simple-

ment p. En notant E1 et E2 l’énergie de chaque photon, on a pas conservation du
quadrivecteur énergie-impulsion total

E1 + E2 = 2mpc
2

D’un autre côté, comme les photons n’ont pas de masse, la norme de leur quadrivec-
teur énergie-impulsion est nulle et on a

E2
1 = p2c2 = E2

2

On en déduit que les deux photons ont la même énergie E, et que

2E = 2mpc
2

Puis
E = mpc

2

Chaque photon a l’énergie au repos d’un proton.
(c) On sait que la longueur d’onde λ d’un photon est donnée par

E =
hc

λ
donc λ =

h

mpc

Avec mpc
2 = 938 MeV et h = 6, 62× 10−34 J.s = 4, 14× 10−15 eV.s, on a donc

λ = 1, 32× 10−12 m

Sur le spectre électromagnétique, cette longueur d’onde correspond à l’émission
d’un rayon gamma, comme attendu d’une annihilation de particules.
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2. (a) Quitte à tourner, on suppose que le mouvement se fait selon l’axe x, ou en d’autre
terme selon la première composante des quadrivecteurs. Le quadrivecteur énergie-
impulsion du proton est

P i
p = (mpc, 0⃗) (5)

Tandis que celui de l’antiproton est

P i
p̄ = (Ep̄/c, p̄, 0, 0)

Avec p̄ l’impulsion associée à Ep̄,

p̄ =
1

c

√
E2

p̄ −m2
pc

4

Le quadrivecteur total est

P i
total = (mpc+ Epc

−1, p̄, 0, 0)

Et la masse totale invariante du système est donnée par

m2
invc

2 = |P i
total|2 = (mpc+ Ep̄c

−1)2 − p̄2 = m2
pc

2 + E2
p̄c

−2 + 2Ep̄mp − E2
p̄c

−2 −m2
pc

2

Soit
minv =

1

c

√
2Ep̄mp

(b) Le centre de masse d’un système est la moyenne des positions des objets du système,
pondérés par leurs masse effective 1 γm

x⃗CM =

∑
i γimix⃗i∑
i γimi

=
1

Etot

∑
i

γimix⃗i

Donc le référentiel du centre de masse d’un système est le référentiel tel que x⃗CM
ne dépend pas du temps,

0⃗ =
d
dt

x⃗CM =
1

Etot

∑
i

γimi
d
dt

x⃗i =
1

Etot

∑
i

p⃗i

Autrement dit, le référentiel du centre de masse est définit comme le référentiel
dans lequel l’impulsion totale est nulle. Mais dans un système fermé, le quadrivecteur
énergie-impulsion est constant, et passer d’un référentiel galiléen au référentiel
du centre de masse ne demande qu’un boost de vitesse constante pour annuler
l’impulsion totale constante, et une translation pour placer le centre de masse à
l’origine. C’est donc aussi un référentiel galiléen. Notre expérience étant un système
fermé, son référentiel du centre de masse est bien galiléen.

(c) Dans le centre de masse, le quadrivecteur énergie-impulsion prend la forme P i
total =

(Etotal/c, 0⃗). Mais la masse totale invariante ne change pas en fonction du référentiel,
autrement dit

2Ep̄mp = |P i
total|2 = |(Etotal/c, 0⃗)|2 = E2

total/c
2

Comme on se retrouve dans une situation où l’impulsion totale est nulle, comme pour
la première question, on trouve à nouveau que les deux photons sont émis selon le
même axe mais dans des sens opposés, et que les deux photons ont la même énergie.

1. C’est la correction relativiste au centre de masse usuel. On voit que c’est en réalité plutôt un centre d’énergie
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On note cette énergie E0, de sorte à ce que le quadrivecteur énergie-impulsion prenne
la forme

P i
total = (2E0/c, 0⃗)

En comparant les différentes expressions de P i
total, on voit

2E0/c = Etotal/c =
√

2Ep̄mp

Donc

E0 =

√
Ep̄mpc2

2

(d) Pour passer du référentiel du laboratoire au référentiel du centre de masse de
l’expérience, il nous a fallu booster le référentiel pour annuler l’impulsion totale

(mpc+ Epc
−1, p̄, 0, 0) −→ (2E0/c, 0⃗)

On note βL→CM et γL→CM les facteurs associés à ce boost, avec

γL→CM =
1√

1− β2
L→CM

On voit en regardant la deuxième composante

0 = γL→CM (p̄+ βL→CM (mpc+ Epc
−1))

Soit
βL→CM = − p̄

mpc+ Epc−1

La transformation inverse, pour passer du référentiel du centre de masse au référen-
tiel du laboratoire, correspond à un boost de vitesse opposée, donc avec

γCM→L = γL→CM

βCM→L = −βL→CM

On veut transformer le quadrivecteur énergie-impulsion des deux photons pour les
passer dans le référentiel du laboratoire. On a vu que de manière générale, un photon
a une masse nulle et donc

E2/c2 − p2 = 0 soit p = E/c

Dans notre cas, cela veut dire que le quadrivecteur énergie-impulsion des photons
dans le référentiel du centre de masse prend la forme

P i
± = (E0/c, ±E0/c, 0, 0)

Avec P i
+ le quadrivecteur du photon allant dans le même sens que l’antiproton, et

P i
− celui du photon allant dans le sens opposé. Dans le référentiel du laboratoire,

l’énergie des photons prend la forme

E±/c = γCM→L(E0/c∓ βCM→LE0/c) (6)

Soit
E± = γL→CM (1∓ βCM→L)E0 (7)

Où les expressions explicites de γL→CM , βCM→L et E0 ont été données précédemment.
On rappelle que βCM→L < 0, et donc que E+ > E0 > E−. Le photon allant dans le
même sens que l’antiproton a plus d’énergie que celui allant dans le sens opposé.

16/18



Physicité IPhO : Relativité Restreinte (corrections)

(e) On utilise à nouveau

λ =
hc

E

Et on note λ0 = hc/E0 la longueur d’onde des deux photons dans le référentiel du
centre de masse. Le photon allant dans le sens de l’antiproton a pour longueur
d’onde

λ+ =
hc

γL→CM (1− βCM→L)E0
=

√
1− β2

CM→L

1− βCM→L
λ0 =

√
1 + βCM→L

1− βCM→L
λ0

Tandis que celui allant dans le sens opposé a pour longueur d’onde

λ− =
hc

γL→CM (1 + βCM→L)E0
=

√
1− β2

CM→L

1 + βCM→L
λ0 =

√
1− βCM→L

1 + βCM→L
λ0

On reconnaît la formule pour l’effet Doppler relativiste. En se rappellant que βCM→L

est négatif, on voit que le photon allant dans le sens de l’antiproton a une longueur
d’onde plus courte que celle de l’autre photon. Il a été décalé vers le bleu, alors que
l’autre a été décalé vers le rouge.

Exercice 17 : Désintégration de neutrons

1. On se place dans le référentiel du neutron. Le système est fermé et avant désintégration,
le système n’est constitué que du neutron au repos. On a donc le quadrivecteur énergie-
impulsion total qui vaut

P i
total = (mnc, 0⃗)

Après désintégration, on note P i
p, P i

e et P i
ν̄ les quadrivecteurs énergie-impulsion du proton,

de l’électron et de l’anti-neutrino. On décompose aussi ces quadrivecteurs de manière
générale en P i = (E, p⃗).Par conservation de P i

total, on a

Ep + Ee + Eν̄ = mnc
2 et p⃗p + p⃗e + p⃗ν̄ = 0⃗

Comme on s’intéresse au mouvement de l’électron, on peut regrouper les quadrivecteurs
du proton et de l’antineutrino ensemble

P i
p+ν̄ =P i

p + P i
ν̄

Ee + Ep+ν̄ = mnc
2 et p⃗e + p⃗p+ν̄ = 0⃗

En particulier, on a

E2
p+ν̄c

−2 −m2
p+ν̄c

2 = p2p+ν̄ = p2e = E2
e c

−2 −m2
ec

2

Donc

(m2
p+ν̄ −m2

e)c
2 = E2

p+ν̄c
−2 − E2

e c
−2 =

1

c2
(Ep+ν̄ − Ee)(Ep+ν̄ + Ee) = (Ep+ν̄ − Ee)mn

Et
c2

mn
(m2

p+ν̄ −m2
e) = mnc

2 − 2Ee

Donc
Ee =

c2

2mn
(m2

e +m2
n −m2

p+ν̄)
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Dans cette expression, me et mn sont des constantes donc la seule chose qui peut
changer est mp+ν̄ , la masse totale du système constitué du proton et de l’anti-neutrino.
Pour maximiser l’énergie de l’électron, on veut minimiser cette masse totale. Comme
c’est une masse, c’est la longueur d’un quadrivecteur, elle ne change pas en fonction
du référentiel et on peut se placer dans le référentiel du centre de masse du système
proton-anti-neutrino. Dans ce référentiel, la quantité de mouvement totale est nulle
et donc mp+ν̄ est égal à la somme des énergies du proton et de l’anti-neutrino dans
ce référentiel, à un facteur c près. On veut donc minimiser l’énergie du proton et de
l’antineutrino dans le référentiel de leur centre de masse, minimum atteint quand ils sont
tous les deux au repos dans ce référentiel. On en conclut que mp+ν̄ est minimal quand le
proton et l’anti-neutrino sont au repos dans leur centre de masse, donc quand ils vont à
la même vitesse. Dans ce cas,

mp+ν̄,minc = Ep+ν̄,CM/c = mpc+mν̄c

Et l’énergie maximale que peut avoir l’électron est

Ee,max =
c2

2mn
(m2

e +m2
n − (mp +mν̄)

2) ≃ c2

2mn
(m2

e +m2
n −m2

p)

En insérant les valeurs données, on obtient

Ee,max = 1, 29 MeV (8)

2. On a vu que l’électron atteint son énergie maximale quand l’anti-neutrino et le proton
vont à la même vitesse, qui est aussi la vitesse de leur centre de masse. Or de manière
générale, on a

E = γmc2 donc
Ev

c2
= γmv donc v =

pc2

E

En appliquant cette formule au système p+ ν̄, on a

vν̄ = vp+ν̄ =
pp+ν̄c

2

Ep+ν̄

Mais par la conservation du quadrivecteur énergie-impulsion total écrite plus haut, on
peut transformer cette équation en

vν̄ =
pec

2

mnc2 − Ee,max

Par ailleurs, on a pe =
√

E2
e,maxc

−2 −m2
ec

2, et donc la vitesse de l’anti-neutrino est donnée
par

vν̄ =
c
√
E2

e,max −m2
ec

4

mnc2 − Ee,max

Ayant déjà calculé explicitement Ee,max, on peut donner la valeur de la vitesse de l’anti-
neutrino

vν̄ = 1, 27× 10−3 c = 3, 82× 105 m.s−1
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